Latest
-
[기타] 페이스북 '힘내요' 감정표현 추가 :: 얻는 법 페이스북은 최근 공식적으로 페이스북 메신저와 페이스북에 새로운 감정표현 '힘내요'를 추가하였다. 이는 최근 코로나19 사태에힘든 사람들을 다독여주기 위해 만든 감정표현이다. 위에서 볼 수 있듯이, 하트를 안고 있는 웃고 있는 얼굴을 페이스북에서 만나볼 수 있다. 최근까지는 베타테스터들에게만 가능했던 기능인데, 요즘들어 모든 사용자들에게 오픈하고 있다. 또한, 페이스북 메신저에서도 하트 리엑션을 추가하였다. 2016년에는 지금 시기의 '힘내요' 처럼 '감사합니다' 감정 표현을 어머니의 날에 추가 했었다고 한다. 이는 꽃 이모티콘에 모티브를 삼았다. 또한, 이외에도 할로윈 감정표현 도입을 이전부터 도입하려고 하였다. 이런 식으로, 페이스북은 이전부터 특정한 시기동안 페이스북 감정표현을 바꾸는 시도를 많이 하.. 더보기
-
Unity3D Pro를 무료로 받아보자 :: Unity 학생 인증하기 게임 개발할 때 많이 쓰이는 엔진 중 하나인 "Unity3D". 최근 들어, 학생들에게 무료로 $150 정도 한다는 Pro 버전을 무료로 제공해준다는 얘기를 듣고 들어가 보았다. https://store.unity.com/?_ga=2.52732139.272253299.1586133426-2017842490.1586006148#plans-individual 솔직히 Personal로 개발해도 큰 지장은 없지만 내가 가장 혹했던 것은 다크 테마를 무료로 받을 수 있다는 것이었다. 아무튼, Student로 들어가 보았다. 그러면, Github Student Developer Pack를 먼저 얻으라고 나오는데, 일단 Github 계정은 다들 있다는 가정하에 진행하겠다. 학교 메일을 추가하기 위해서는 일단 Gith.. 더보기
-
페르마의 소정리 :: 증명하기 페르마의 소정리는 합동식 관련 문제를 해결할 때, 자주 쓰이는 정리로 오일러 정리의 구체화라고 할 수 있습니다. 특히, 정수론에서 필수적인 정리입니다. ▶ 정의 $p$가 소수이고 $gcd(a,p) = 1$일 때, $a^{p-1} \equiv 1 \pmod{p}$ ★ 증명 원소 $(p-1)$개의 유한 집합 $ R = \{a,2a,\cdots,(p-1)a\}$를 정의합니다. (이를 $p$의 기약 잉여계라고도 합니다.) $a$와 $p$는 서로소이므로, 이 원소들은 $p$로 나눴을 때, 나머지는 $1$부터 $(p-1)$ 중에 있을 것입니다. 만약, 나머지가 $1$부터 $(p-1)$ 까지 일대일 대응이라면 $\left\{ a,2a,\cdots , (p-1)a \right\} = \left\{1,2,\cdots ,.. 더보기
-
[롤] 영원석은 무엇일까? :: 인장을 강화해보자 우리는 게임을 하다 보면 기록에 남기고 싶은 멋있는 장면들이 있다. 이런 점들을 보안하기 위해 리그 오브 레전드는 "영원석" 시스템을 개설했다. 영원석은 챔피언 기반 업적 시스템으로 좋아하는 챔피언에 대한 자신만의 업적을 자랑할 수 있게 해준다. 이는 10.5 패치 부터 나오게 됬는데 살만한 가치는 있는지 또한, 용도는 무엇인지에 대해 알아보았다. 영원석을 요약부터 하자면, ▷ 자신의 업적을 게임 내외에서 뽐내는 방법 제공 ▷ 숙련도와 랭크 게임 이외의 새로운 진척도 시스템 제공 ▷ 성취를 독특한 혜택으로 보상 한 마디로 말하자면, 인장질의 다른 종류라고 봐도 되겠다. 그러니까, 인장이 강화되는 것인데 인게임 화면은 다음과 같다. 자신이 업적 자랑하는 것을 뽐내고 싶다면 충분히 살만한 가치가 있을 거 같.. 더보기